Conference on Robot Learning (CoRL) 2023 Note

Seungchan Kim (CMU)
seungch2@andrew.cmu.edu | https://seungchan-kim.github.io/

November 6-9th 2023

Table of Contents

- Day 1 (Nov 6th): Workshops

— LEAP Workshop (Invited Talks, morning)

— PRL Workshop (Invited Talks, morning)

— LangRob Workshop (Panel Discussion, morning)
— PRL Workshop (Invited Talks, afternoon)

- Day 2 (Nov 7th): Main Conference

— Oral Session 1: Manipulation 1

— Welcome Ceremony

— Oral Session 2: Reinforcement Learning

- Day 3 (Nov 8th): Main Conference

— Oral Session 3: Mobility (Driving/Navigation/Locomotion)
— Oral Session 4: Large Language Models

— Early Career Keynotes

- Day 4 (Nov 9th): Main Conference

— Oral Session 5: Manipulation 2

— Sponsor Talk (Google DeepMind)

FEEEERNEEEEEE =

This note is taken during my attendance at the CoRL 2023 held in Atlanta. Please feel free to
distribute. If you have any sugestions for revisions or feedback, please send them to my email
at seungch2@andrew.cmu.edu. Unfortunately, I wasn’t able to participate in all sessions. For
the parts I missed, please refer to the CoRL 2023 website


https://seungchan-kim.github.io/
https://www.corl2023.org

1 Day 1 (Nov 6th): Workshops

On the first day, I attended multiple workshops. I moved to different workshops
at different timeslots. I mainly attended Learning Effective Abstractions for
Planning (LEAP) Workshop, Pre-Training for Robot Learning (PRL) Work-
shop, and Language and Robot Learning (LangRob) Workshop.

1.1 <LEAP Workshop>

Interests in learning abstractions for planning, how to learn the abstractions,
how to use it for planning, and how to use it effectively?

Paper themes: language models, vision-language models, diffusion models,
long-horizon planning, skill discovery, integrated planning and RL, humans in
the learning and planning loop

Questions of the day

1. When, where, and from what should abstractions be learned?

2. What is the right objective for abstraction learning?

3. To what extent should the abstractions be interpretable?

4. How can and should we leverage foundation models?

5. To what extent is natural language a useful representation for abstraction
learning?

<Invited Talk 1> Aviv Tamar, “Explore to Generalize”

Why do we learn abstractions? Motivation comes from difficult planning prob-
lem, where human can identify structures in solution (state abstraction, tempo-
eral abstrafction, hierarchy), use this structure to solve the problem.
Approach: just learn to solve the problem (abstractions will be automatically
identified if needed)

Few-shot generalization in RL: train an agent sovle different training problems;
agent will learn how to solve a new test problem in few-shot

Generalization is difficult:
e ProcGEN benchmark - still a challenge.

e Theory - PAC bounds exponential in #DoF of MDP distribution P(M)

e Overfitting - easy to “memorize” train task solutions

Can we learn to solve mazes with less than 10K examples? What are we missing?



Previous dominant approaches:
- Inductive bias for a planning policy: Value iteration networks, domain specific
- Invariant policies: to appearance (augmentation), to length of task (IDAAC)
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(Zero-shot T=1, few-shot T=few episodes)
Explore at the test time!

Observation: Max Entropy exploration generalizes! Why? Exploration behavior
is harder to memorize! [2]
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Figure 1: Explore to Generalize [3]

Exp-Gen Algorithm [3]: Max-Reward Ensemble with Max-entropy agent; during
the test time: ensemble agreement? Yes — ensemble action. But if no? —
exploration actions

Summary [3]

Exploration at test time — Generalization

Max-Ent exploration policies generalize well

Exp-Gen idea: detect uncertainty (ensemble), exploration when uncertain,
otherwise exploit

Abstraction for planning — abstraction for exploration.



<Invited Talk 2> Shiqi Zhang - “Symbolic State Space Optimization:
Learning Abstractions for Mobile Manipulation”

Symbolic state optimization work [4]

Task planning - standard way is.. to locate one object here, there is a symbolic
location, navigate to this location, grasp it, and move somewhere...etc, etc.. if
you do this task planning this way — long sequence of actions!

Example Task: Tidy home
Previous task and motion planing methods assume predefined symbolic locations

The focus is to optimize abstracted locations and their geometric groundings!

Instead of a long sequence of plans, group some of them.
Care both feasibility and efficiency.

Symbolic State Space Optimization (S30); not only doing optimizing for task
planning, but also optimize the task planner. Challenge: how to reduce search
complexity? Leverage computer vision to gauge feasibility.

Takeaway message:
e Learning abstraction is important for robots to deal with the complexity
of the real world

e Challenge: abstraction effectiveness depends on the robot skills, planning
goals, and real-world configurations

e Symbolic State Space Optimization paves the way for learning abstracted
locations for mobile manipulation.

<Invited Talk 3> Alex Lagrassa - “Transition model abstractions for ef-
ficient and reliable planning”

Transition models are imperfect abstractions of the real world. However, the real
world is quite complex. We use anlaytical models, simulator, learned models.

The right model abstractions are a key to good plans:

Expressiveness — compute plans to reach a goal, execute plans to goals,
satisfy constraints, avoid unwanted effects.

However this model should also be simple.

Simplicity — Compute quick plans, within memory limits.

Trade-off between expressiveness and simplicity

How should planners select how and where to apply transition models?

Key concept: Model Precondition [5]



subset of S x A space where a model is sufficiently accurate

1. Selecting between multiple models in planning

Use model preconditions for planning with multiple models

- prioritize faster models, apply models wehre sufficiently accurate

What does ‘sufficiently accurate’ mean?

Predictive accuracy as a proxy for sufficient; model deviation (distance between
predicted next state and true next state)

However, we don’t know the ground-truth state; we learn and plan with model
preconditions by fitting model deviation estimator (MDE)

Multi-representation A* + Prioritized SElection (PS) — fastest model

Prioritize expansion with faster models
combine searches with different models; select model based on optimality re-
quirements, computation time per model

MRA* with model preconditions improves performance
2. Focusing dynamics adaption with model precondition

What if the current model is insufficient/ Adapt model for more complex dy-
namics? Adapt a learned model

Limitation: real-world data is expensive. Sequential nature of trajectories also
aggravates this.

Data-efficient learning of model preconditions

Informing active learning with deviation estimate
1) Generate task relevant candiate trajectories

2) Compute step-wise utility using estimated model
3) Aggregate

4) Execute highest utility trajectory

Active learning of MDE improves data-efficiency.

3. Planning-guided model generation: generate dynamics models for a task;
adaptively focus model fidelity.
what is necessary to select good actions from that state?

<Invited Talk 4> Amy Zhang, “Value-Based Abstractions for Planning”

What makes representations amenable to planning?
Build a graph from data; use dijkstra’s to construct a global metric and latent
representation space. — Downside: restricted to small dataset



Plan2Vec: Unsupervised representation learning by latent plans. [6]

Learning a Universal Value Function
V x (Observation, Goal)

V*: general notion of goal-directed task progress. Rich visual representation so
that V* can be expressed

Key Idea: learning from human videos as a BIG Offline goal-conditioned
RL problem

VIP: Towards Universal Visual Reward and Representation via Value-implicit
pre-training [7]; Offline dataset of diverse human videos (human videos are rich
sources of gobal-directed behavior); offline value learning on human videos

Towards Universal Visual Reward and Representation via Value-implicit pre-
training
Downstream tasks: imitation learning, trajecotry optimization, online RL, few-

shot real-world offline RL
- VIP robustly minimizes both robot and object pose errors

Extension to language: [8] Solving diverse language-specified tasks in diverse
environments. Previously:

- Lacks visaul rewards/feedback grounded in language

- Generalizable vision-language rewards and representations

LIV [8]: simple and effective algorithm for peretraining multimodal value rep-
resentations from large-scale offline human video data

1.2 < PRL Workshop >

<Invited Talk 1> Chelsea Finn, “Can robots fine-tune autonomously?”

Context: the advent of broad robot pre-training data nowadays
— Bridge V2, RH20T, open X-embodiment

Main Question: How can we make fine-tuning as easy and fast as
possible?

1. Fine-tuning to new tasks
How can we make fine-tuning as easy and fast as possible?
Can the robot fine-tune autonomously? e.g. with RL?

Q: What prevents us from using RL for easy fine-tuning?
A: - need feedback from reward function



- need to autonomously retry the task
- should incorporate prior experience

Q: Can we just run RL algorithms without resets?
A: ability of RL severely decreases with less reset [9) — we cannot apply vanilla
RL without reset

Alternative paradigm for auotnomous robot learning:

Only Live Once: Single-Life Re nforcement Learning, NeurlPS 22
bots: End-to-End Autonomous Visuomotor Rein

Chen, Sharma, Levine, Finn. You

D forcement Learning CoRL 23
Sharma, Ahmed, Ahmad, Finn Self-Improving Kol

Figure 2: episodic RL vs reset-free RL vs single-life RL

Self-improving robot [10]

Can robots pretrain with broad off-the-shelf data, and fine tune with
minimal human supervision?

RoboFUME: making robot fine-tuning easy by improving autonomoy. [11]

e diverse off-the-shelf demo data — small amount of target task demos —
pretrained policy

e pretrained VLM — finetuned VLM reward model

e Pretrained policy + finedtuned VLM reward model — online finetuning
with minimal human inverventons — fine-tuned policy



RoboFume: key design choices [T1]

e learn language-conditioned policy and critic on all data

e fine-tune mini-GPT4 to predict binary success/failure using prior and new
demo data (including small number of failed demos)

cal-QL algorithm for RL pretraining and fine-tuning

behavior cloning regularization

Analysis: are prior data, language-condition and online data important?
- Without online fine-tuning: performance drops significantly

- offline only (without language conditioning): performance drops more
- offline only without prior data: performacne drops a lot

2. Fine-tuning to new conditions

Can the robot adapt during deployment?

Alternative paradigms for autonomous robot learning: single-life RL
Self-improving robots [10]

single-life RL: given prior data in train env, agent has one life to autonomously
complete task in novel, OOD scenario.

can we fine-tune with RL in a single episode at test time?

can we fine-tune with vanilla RL, but at test time?[12]

Idea: can robots adapt both in the space of actions and in the space
of behaviors? not only the low-level action, but also the high-level behaviors?

Robust autonomous modulation (ROAM)

Key Idea: use the value functions of the behaviors to identify an appropriate
behavior at every timestep.

(1) Further train each behavior’s value function to encourage identifiability of
familiar states; Bellmen error + additional cross-entropy error term.

(2) At test time, sample behavior, sample actions, optionally fine-tune

Related work: Adapt-on-the-go: Behavior modulation for single-life deployment
(Chen et al 2023)

+ doesn’t require a separate high-level controller

+ agnostic to how pretrained policies and value functions are obtianed

+ simple mechanism for adapting within a single episode to a variety of situa-
tions

Takeaway: with important modifications, RL enables autonomous fine-tuning.
1. fine-tuning with reset-free RL:



— with careful design choices, offline-to-online RL enables robots to learn new
tasks with off-the-shelf prior datasets

2. adaption with single-life RL:

— autonomous adaptation at high and low levels enables robot to handle OOD
conditions

<Invited Talk 2> Kristen Grauman, “From Goals to Grasps: Learning
About Action from People in Video”

Q: What could be learned by watching people?
A: First-person video reveals how people move in the environment, direct at-
tention, interact with people, interact with objects

Learning about action from video — towards intelligent embodied agents that
learn by watching people interact with the environment and objects:

e hierarchical video-language embeddings
e ego-exo alignment from unparied data
e environment context from ego-video

e grasping with human-like poses

EgodD: everyday activity around the world [I3] — 3670 hours of in-the-wild
daily life activity; 931 participants from 74 worldwide locations; benchmark
tasks; multimodal (audio, 3d scans, imu, stereo, multi-camera, text narrations).

Idea: robots need to understand the intent of actions! Robots need to
understand why the action is happening.

Ego4D data has text narrations: dense descriptions of camera wearer activity
and video-level summaries. 13 sentences per minute; 4 million sentences.

1. Hierarchical video-language learning

Existing methods: match short clips to corresponding narrations.

Instead, the idea is to summarize! instead of long sequences of short actions
(fetch the water into the pot, cuts the onions with the knife, drops chopsticks
on the board..), just summarize sentence! (make salad dressing with some oil
and sauce..) [14]

Idea: wvideo-language embedding learning, representing the hierarchi-
cal relationship between action descriptions (what) and higher-level
semantics (why)

Child-level what; parent-level why. HierVL [I4] achieves parent-level summary
and child-level narrations. Pretrained HierVL features provide strong perfor-
mance on multiple downstream video tasks.



2. Ego-exo alignment from unpaired data:
Robots need fine-grained video understanding

Fine-grained activity recognition
Challenges:
e subtle differencees between action phases

e major viewpoint variation

— Importance of exocentric and egocentric relationship; want to relate the
actions of the demonstrator (exo) to the actor (ego)

Ego-exo alignment (AE2) for feature learning

Idea: learn fine-grained view-invariant representations by temporally
aligning egocentric and exocentric videos of the same action [15]
Unlike prior work, it operates with unparied, unsynchronized data while allow-
ing dramatic viewpoint differences.

— AE2 consists of (1) object-centric encoder (— extracts object-centric repre-
sentations to bridge the ego-exo gap)

(2) contrastive regularizer (— avoid collapse and more robust to noisy videos)

3. Environment context from ego-video
Robots need environment-aware video representations

Instead of ‘Videos as fixed-size chunks of frames’

— Videos in spatial and activity context

— Representations that are predictive of the camera-wearer’s local surroundings
Learn using videos from simulated agents in 3D environments — Transfer

learned environment representations to enhance ego-video understanding

EgoEnv: Human-centric environment representations from egocentric video.
Nagarajan et al. 2023

— Downstream task 1: room prediction (which room is this? bathroom, living
room, kitchen, staircase?)

— Downstream task 2: Episodic memory natural language query (e.g. when
did I visit bathroom?)

4. Grasping with human-like poses

Idea: Let agent prefer grasping at human affordance regions and with
human-like hand poses

In-the wild Youtube videos — dexterous robotic grasping

Summary
e Ego4D as a resource for learning human behavior and interaction

e Hierarchical video-language learning for video features [14]

e Ego-exo alignment for fine-grained activity understanding [15]

10



e Environment-aware ego-video representation (Nagarajan et al. 2023)

e Dexterous grasping with affordance points from video

1.3 < LangRob Workshop>

< Panel Discussion >
Panelists: Zsolt Kira (ZK), Jeannette Bohg (JB), Ed Johns (EJ), Fei Xia (FX),
Sergey Levine (SL)

Q: Opinions on the term foundation models (in the context of robotics)

FX: large enough model that is trained on large, diverse datasets. Can come up
with emergent capability, strong generalization beyond what’s in the training.
For robotic foundation model, it should be a model that can do reasoning,
manipulation in embodied setting, etc.

JB: Need to be trained a large massive data. (whatever domain). Often trained
using self-supervised method. Being applied zero-shot to downstream tasks.

EJ: As an academic in a small lab, it is something we can take from big tech
company. (laugh)

ZK: ...(sorry I missed his answer)...

SL: ... really great model with a lot of positive features that people want to use;
great model in the context of robotics: we're pretty close there.

Q: What Large Language Model cannot do soon?

FX: real, fine-grained manipulation, or whatever that requires some know-how
(e.g. cycling); Can vision-language model learn such fine-grained details?

JB: In principle, if you can sample enough data; it’s possible. The right question
is, for what problem can you not feasibly collect data? Will we be able to get
the data, the trillion data, in robotics? Just million trajectories is not the kind
of diversity we’re looking for. More than that we need.

EJ: LLMs have superhuman or same ability as human experts in certain field;
I think we can expect LLMs to be at the point where they are good as best
roboticists in the world. But even best roboticists don’t know how to solve some
tasks. some vision-motor control, etc. Fine-grained manipulation tasks where
we don’t have sufficient representations. some areas even the best roboticists
can’t design the features.

ZK: Long-horizon planning is a challenge. Long-horizon planning is something

11



that LLMs can’t solve soon? Another interesting one is, creativity, or out-of-box
thinking, for example, whatever Einstein came up with at the time given all the
knowledge; completely different way of thinking.

SL: Short, uncontroversial answer - for language model in particular; theory of
communication; language is beneficial for communication. If I want to com-
municate something to you, I'm transmitting those bits that you don’t know
that I know. There is absolutely no point transmitting things both of us know.
That’s inefficient communication; which means, language is a communicating
those things that some people know, some people don’t know. There is no
point transmitting what all people know. But we know, trouble for robots is
that it’s what all people know, things like body proprioception. I said this is
non-controversial, because nobody is actually requiring LM will just be about
language; we’re increasingly seeing more multi-modal models.

Long, complex answer: models that are trained for predictions (general predic-
tion models) are not doing rational decision making; rational decision making
maximizes utility. Prediction does not necessarily lead to rational decision mak-
ing. It still doesn’t make them rational. In the long-run, we need ways to use
language models in the context of planning and RL loop; torture the predictive
model to more rational decision-making way.

Q: Spicy question. What are the inductive bias that are original from robotics,
not stealing ideas from vision and NLP community?

SL: It’s not stealing. The entire field of computer vision uses the idea developed
for neural network, which were from ML community. Ideas are ideas; just use
the best ideas.

ZK: T agree. There is a lot of low-hanging fruit nowadays. This thing came out
only a year ago; people are exploring a lot; eventually it will plateau; assume at
that point, we will have to come up with new solution.

EJ: When I say end-to-end robot learning, what does that actually mean? There
is a neural network; mapping predictions to some actions. Difference between
robotics; there is a lot of things we can model and analyze analytically. Robotics
isn’t necessarily same with other field; for example, physical model of the world.
A big breakthrough can be, combining classical analytical methods with learned
behaviors; rather than learning everything from scratch. Learning everything
from scratch might not be the best approach.

JB: Always good to ask what’s at the end of the end-to-end; I'd also like to
highlight hardware; people recently have come up with so great hybrid solu-
tions. Look at the cool new haptic sensors that came out in last few years (e.g.
vision-based haptic sensors); such things are going to make huge difference. An-
other thing is a cool new hand designs; some crazy hand with active surfaces,
anthropomorphic paradigm, etc.
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FX: A serious point is, we contribute some of original things to the research;
robotics is about embodied Al it is about being active; for example, the concept
of affordance is also very helpful beyond robotics. Robotics also does lots of
reasoning and planning, which is also very helpful to other Al communities.

Non-serious point; roboticists are generally very optimistic! Robotics is not
working yet! it will work in the future! We’re going to bring some optimism to
the field.

Q: Question on industry vs academia. Question on bigger model size. What
should academic research focus on? What should industry research focus on?

FX: For the foundation model, big advantage is that you only need to train
the model once; academics can use that; large model, you can still play a lot
with the trained model. For example, prompting tasks. Also need to tackle
alignment, safety, etc. Industry and academia can have different responsibilities
in development. Collaboration is more needed.

JB: Collaboration. I'm really excited about collaboration like open X-embodiment
- I reallly like that idea. That’s great. Another answer is... Fei-fei Li once said,
you should always think about something that is 10 years ahead that industry
is not thinking. Many of the big ideas originally came from academia. Also,
study everything. You don’t know at some point what’s going to be important!

EJ: It does force you to try to be more data-efficient than in industry, where you
can access lots of data and engineering and computes; for example in imitation
learning a lot of work focuses on very efficient imitation learning methods, which
might not be so important in industry. In academia, it forces you to think
differently and try to be more efficient.

ZK: Research is like a genetic algorithm. We don’t ultimately know which idea
will come out. Diffusion models was originally a very math-heavy thing; there
are different flavors in the research you can do. Look out what are the 10-
year problem that industry is not tackling now. At community-level, we should
ensure that there is a right incentive for the long-sighted research, though, in
academia.

SL: Panelists have already provided interesting points. I'll just add one. One
thing to consider is, it’s not much about academic vs industry. You can think
about it about fundamental vs applied research; especially in modern ML, if you
want to make something big, it might not be fundamental; if you are working
on something fundamental; it might not be big. There is some kind of trade-off
between fundamental vs big.

Q. For us, as reviewers, what should be the right metrics to evaluate papers on?
How do we review the papers (foundation models for robotics)?

13



SL: Very carefully (laugh). There is not much metric; just remember what
science is supposed to do; what is the claim? is this claim sound? how is it
validated? etc...; there is nothing particularly profound about that.

ZK: Similar with SL. Does paper make a proper claim? It has to be a significant
claim that people will care about. Does the paper provide evidence? What kind
of contributions are made? Empirical? Theoretical? Either is fine. Just have
an open mind as a reviewer.

EJ: Area chair is so important in robotics. Compared to CV or ML, which have
narrower, common benchmarks, in robotics, the benchmark can be wider and
diverse. A lot of people create their own benchmarks. Some young reviewers
might not understand and just miss it. When a robotics paper did it differently,
junior reviewers might think that the paper didn’t do enough; in that case,
the area chair should be the more responsible person to evaluate methods and
compare the benchmark. Rather than a competition between this paper and
that paper, more understanding of the paper..

JB: Agree with EJ. One thing we don’t want to adopt from CV is benchmark-
driven, standard benchmark-driven research. In robotics, it should be different;
although benchmark is needed, robotics should aim wider. Robotics has much
more space. Define a new problem. New benchmark, beyond the current bench-
mark.

FX: I wish the review process in robotics to be a little bit less divided. For
example, between academic and industry; there are some prejudices; also the
background is more diverse. We have different generations of researchers from
different schools of thoughts. Let’s be more open minded.

JB: Also a good point. I often see that a lot of reviews are really mean; some-
times it’s almost a hate speech. Reviewers should always remind themselves
that there is probably a young student who’s reading this whose soul is literally
crushed.

Q. Give us a statement that other panels will disagree with you?

EJ: T'll say something that at least someone here will probably disagree with.
Locomotion and navigation is solved.. anything left is manipulation.

JB: I think simulation is a nice tool, but it’s not gonna get us all the way.

ZK: I think simulation is one route to scale; if we believe scale is something that
other fields made successful.. real world is awful. It’s also a big chicken and egg
problem. Tesla solved this by.. they actually have cars, they actually drive not
by themselves but by human drivers. They gather lots of information from the
car data; for in robotics, home robotics, for example, it’s not clear how to do
that?
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Controversial statement is this: nobody is actually working on the biggest bot-
tleneck for getting robots at home; what about reliability? What is the path to
having home-robot?

SL: Different problems in robotics are much more similar to each other. If
you work on robotic manipulation, you know a lot about manipulation; if you
work on navigation, there is a lot of navigation thing going on; I think in the
next few years we will increasingly see that they are similar, using similar /same
sets of tools for solving manipulation and navigation; cross-section problem.
(Autonomous driving is a bit different; they have safety concerns, and they
have tons of more data) More and more, the areas are united; if you figure out
robust method to one area, it will be relevant with other area.

FX: Optimistic take is, over the next couple years, robotics and embodied Al
will be at the central place of Al development. LLMs will soon run out of tokens;
people will focus more on active learning and embodied Al.

Q: (Sorry, I didn’t hear the question well)

SL: Bigger picture wise: Tesla example is apt. Being smart with collecting
data, once it is real. The single best thing we can do, build a system that
people actually use (hundred, million robots)..

FX: If you don’t have deployment and data, how do you start? probably start
with small-scale, and have safety constraints, then gradually scale that up.

ZK: One solution could be putting lots of robots in home, controlled by hu-
mans... somehow should have lots of robots in actually home, to scale.

EJ: If human is there to provide rewards and reset the environment, and give
feedback to robots, why not spend time providing demonstrations.

Q: What is something that is not able to get from vision and language.

JB: In vision and language, there is fundamentally a lack of actions. What is
the effect of your action and executions. That’s missing in CV and language.

FX: In embodied AI domain vs LLMs: LLMs use next-token predictions. It’s
about predicting next tokens. In robotics, people have extensively used opti-
mization to derive something; foundation model for reasoning, planning ability
is needed.

SL: While there is a lot we can say about the quality of embodied data over,
passive data from web; in the long-run, real answer will be we will want quantity.
All of the data you can mine from web, are created from humans. Millions,
billions of people are laboring to create all of these stuffs to put on web that
we use to train our AI system. If the point of building robot is to automate
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things that humans do themselves, ...(sorry, missed this part)...certainly, coming
back to autonomous driving example, if every car is partially an autonomous
car, then the data collect for autonomous driving has to be larger than the
data-collect of humans-driving. In the case of dish-washing, far more data for
dishwashing robot needed? In the long-run, we need it much much larger, and
keep it bigger.

1.4 <PRL Workshop>

<Invited Talk 3> Vincent Vanhoucke, “Embodied Foundation Models”

Robotics in one slide: Perception, Planning, Actuation

Perception

Figure 3: Robotics in one slide

But he argues everything is wrong with this slide.

What he suggests: The solution to Robotics in one slide: Giant AI Models that
encompass perception, planning, actuation.

Think about the information flow between perception and planning. Think
about a cup in the kitchen. What is the state information robot can get from
perception? 6DOF pose? collision information? Is this enough?
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Probably you want the robot to know more about it; full/empty, hot/cold,
rigid /squishy? whose mug? heavy/light? someone holding it?
All these information are essential. You need a very large, deep amount of
information that flows from perception to planning bottleneck.

Think about a dog. What is the state information that we want the robot to
know about the dog?

In real-world settings, the API between perception and planning is
essentially AI-complete. Reductionist, fixed ontologies don’t stand a
chance. Now what?

Two lines of inquiry: 1. Natural Language 2. Raw Pixels

First approach is, SayCan: Planning with LLMs. [16] Pairing LLM with value
functions — SayCan.

Next approach is PaLM-E: an embodied multimodal language model [I'7]. Used
for mobile manipulation, task and motion planning, etc.

PaLM-E is massive with 562B parameters. Yet we observe positive transfer
across robots using little robot data.

Are the abstractions (perception + planning + actuation) useful?

RT-1: Robotics Transformer v1
- RT-1 is able to reach 100% performance on seen tasks,
- while maintaining better robustness to unseen variability

RT-1: diversity is all you need? Do we need more data? Yes, more data is
better. But more diverse data is better.

RoboCat

Bootstrap and self-improvement.

(https://deepmind.google/discover /blog/robocat-a-self-improving-robotic-agent /)
— Robocat adapts to unseen tasks and embodiments with limited dataset of
demonstrations; incorporates skills back with self-improvement and performs
better by scaling the trained data

RT-2; Check at the CoRL 2023 poster session!
RT-2 features emergent transfer.

Closing comments: Robotics is ready for its ImageNet moment. Time for the
community to take inspiration from computer vision and invest in data.

<Invited Talk 4> Dhruv Batra, “How does one benchmark foundation
models for embodied AI and robotics”

We want generally intelligent and broadly capable robots. Hypothesis: pretrain-
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ing on out-of-domain data as a strong prior.

View from other Al communities:

NLP:

- base task: masked language modeling

- model: transformer;

- dataset: common crawl, wikipedia...

- downstream tasks: sentiment analysis, dialog,

2D vision

- base task: jigsaw, invariance to data augmentation, MAE on patches, self-
distillation

- Model: CNNs, transformers

- Dataset: ImageNet, Ego4D, etc,

- Downstream tasks; detection, segmentation, captioning,

What about the Embodied AI?
- base task:
independently at each time t? or over the entire trajectories?

Dataset?
- which trajectories? offline dataset? oracle and agent in sim?

Model: transformer?

Downstream tasks: navigation, rearrangement, manipulation? offline datasets
or sim or deployed on robots?

Question to ask: If I claim I have made progress towards a foundation model
for Embodied AI, what evidence would you demand from me?

Generalization!

e new starting states of the robot

e new environment components (objects, scenes, etc)
e new goals, tasks, skills

e new embodiments

How does one benchmark? simulation-only? sim2real transfer and predictivity?
hardware-only?

Simulation-only
VC-1: A visual foundation model for embodied Al

Which one is the best?

e different pretraining algorithms
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e cvaluation on different tasks

e with different settings: few-shot vs many shots; imitation learning vs RL;
with vs without fine-tuning

Evaluating PVRs
MVP; R3M; CLIP

Scaling datasets

- overall dataset scaling is helpful

- adding a computer vision dataset like ImageNet helps
- cross-domain diversity > within-domain diversity

VC-1 adapted
- End2End fine-tuning
- MAE-based adaption on in-demand data

Sim2Real transfer and predictivity [I§]
Question: If method A outperforms method B in simulation, how likely is the
trend to hold in reality?

2 Day 2 (Nov 7th)

2.1 <Oral Session 1: Manipulation >

< Talk 1> Jennifer Grannen, Yilin Wu, Brandon Vu, Dorsa Sadigh. Stabi-
lize to Act: Learning to Coordinate for Bimanual Manipulation [19]
https://openreview.net/pdf?id=86aMPJn6hX9F

Goal: Learning Bimanual Tasks
Exploring to learn; Collecting demos for learning.

Make the insight for stabilizing for bimanual tasks. When one arm is stabilized,
the other arm is acting. There is a stabilizing arm, and an acting arm.

BUDS: Bimanual Dexterity from Stabilization Two subproblems

e Stabilizing: stabilizing position model — stabilizing keypoints — noncom-
pliant stabilizing — stabilizing actions

e Stabilizing actions to go the acting module, which does imitation learning.
Outputs acting action to form the bimanual policy

e There is a restabilizing classifier, that takes images as inputs, and outputs
binary output (update stabiliizng position or continue?)
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Experiment shows how important it is to have stabilizing arm / restablilization.
(When zipping a jacket); another task is a marker cap, which requires a high
precision. Cut vegetable task - baseline doesn’t learn any effective stabilization
policy; BUDS does restabilization after every cut. Also very generalizable to

OOD.

<Talk 2> Vainavi Viswanath , Kaushik Shivakumar , Mallika Parulekar , Jainil
Ajmera , Justin Kerr, Jeffrey Ichnowski , Richard Cheng, Thomas Kollar,
HANDLOOM: Learned Tracing of One-Dimensional Objects for In-
spection and Manipulation https://openreview.net/pdf?id=WWiKBdcpNd

What is cable tracing? Applications: broadly used in home, hospital, etc.
Objective: given grey-scale image and one endpoint position, find the trace.
GPT-4V can’t be a solution to the complex cable tracing tasks.

Approach: branch points. When we encounter crossings, explore the multiple
branches. Previous works are limited to orthogonal crossings.

Non-orthogonal crossings: when cable segments are twisted with one another.

HANDLOOM: 1. autoregressive cable tracing. — 2. crossing classification —
3. full cable state estimation.

Key idea: inductive bias in local crops is effective for 1D deformable object state
estimation.

Architecture: sim+real data — UNET — autoregressive trace predictor that
outputs heatmap — BCE loss.

Notable Experiments:
e Generalization to other tables.

e Multiple Cables

e Untangling Long Cables

Summary: novel methods for cable inspection, state-based policies, knot detec-
tion, and autonomous untangling.

Q: How big are the crops? how do you choose the size?

A: Crops are approximately 30 pixels wide; we ran some experiments to find
the size; if they are too big; lots of distraction; if too small; can’t effectively
leverage the context.

<Talk 3> Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, Jiajun Wu,
RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with
Diverse Tools [20] https://openreview.net/pdf7id=69y5{zvaAT
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Dumpling making is an extremely long-horizon tasks. It requires diverse tools
with deformable objects.

Human approach? flour, dough, segment, cut, flatten, fill them with ingredi-
ents... very complex and long tasks.. Can robot achieve this?

Tool design inspired by real-world tools.

Robot achieves the task by sequentially going through the jobs of dough, knife,
gripper, press, roller, circle cutter, pusher, skin spatula, filling spatula, hook,
dumpling..

Skill-level planning: given current input and target, classifier network outputs
which tools to use (like large roller, circle press, punch, knife..). Then, policy
network determines precise actions.

Motion-level planning: key idea is a tool-conditioned future prediction based on
GNN.

<Talk 4> Yunhai Han, Mandy Xie, Ye Zhao, Harish Ravichandar. On the
utility of koopman operator theory in learning dexterous manipula-
tion skills. [21] https://openreview.net/pdf?id=pw-OTIYrGa

Why dexterous manipulation? World is designed by and for humans. Multiple
fingers increase control. Firm grasping for tool use.

Challenges:

e complex interdependent hand and object motions
e high dimensional state and action spaces

e highly nonlinear dynamics

Deep learning has shown progress, but the limitations are:

e computation burden
e hyperparameter tuning
e sensitivity to initialization

e inscrutable behaviors (blackbox)

Question: Could we leverage well-understood structures to address the challenges
in dexterous manipulation? The answer is yes, and use Koopman operator.

What is Koopman operator? arbitrary nonlinear system is lifted to linear sys-
tem. (transformation).

With lifting functions and training data, we can get an analytical solution.
Koopman operator reduces the problems
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computation burden — least-squares optimization
e hyperparameter tuning — limited sensitivity to choice of lifting functions

e sensitivity to initialization — no sensitivity to analytical solution

inscrutable behaviors (blackbox) — Linear dynamical system

KODex - Koopman operator-based dexterous manipulation

e the koopman operator is used to encode interdependent reference motions

e inverse dynamics controller is used to track the hand motion.

Q: what are the disadvantages?
A: Right now, it’s not general yet; it’s not evaluated on other benchmarks, other
tasks, including locomotion.

< Talk 5 > Xinghao Zhu, JingHan Ke, Zhixuan Xu, Zhixin Sun, Bizhe Bai, Jun
Lv, Qingtao Liu, Yuwei Zeng, Qi Ye, Cewu Lu, Masayoshi Tomizuka, Lin Shao,
Diff-LfD: Contact-aware Model-based Learning from Visual Demon-
stration for Robotic Manipulation via Differentiable Physics-based
Simulation and Rendering [22] https://openreview.net/pdf?7id=DYPOvNot5F

Learning from demo: large-scale videos pf human manipulation; LfD reduces
the need for reward engineering. extensive skill acquisition for foundation robot
models

Challenge: RGB only, no object shape, camera pose; no task-specific rewards;
limited videos for learning each task

Key Idea: Contact-aware model-based learning from wvisual demo for robotic
manipulation via differentiable physics-based simulation and rendering.

Pose and shape estimation: differentiable rendering — differentiable mesh and
texture rendering — reconstruction and pose estimation.
Employ diffusion models for generating unobserved angles.

Contact-aware manipulation policy; object 6d poses as subgoals — model-based
policy based on graph searches.

Graph node is robot contact position and object 6d pose

Manipulation primitives as graph edges; contact point localization and contact
wrench optimization.

Experiment: Comparison with NeRF

Diffusion model is necessary in that it completes occluded area

Compared to other planners: generates dexterous manipulation trajectories
Comparison to RL: planning + behavior cloning + RL fine-tuning requires less
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training time than RL, generalizes better to new objects, and is deployable to
real robots.

<Talk 6> Haonan Chen, Yilong Niu, Kaiwen Hong, Shuijing Liu, Yixuan Wang,
Yunzhu Li, Katherine Driggs-Campbell. Predicting Object Interactions
with Behavior Primitives: An Application in Stowing Tasks. [23]
https://openreview.net /pdf 7id=VHEWIPF4S;j

Modeling multi-object interactions is challenging. Heuristics alone cannot solve
the task.

Learning forward dynamics via GNN. State s = (O, E). Object vertex O con-
sists of position, attribute; Gripper vertex consists of position, motion, attribute.

Pipeline: state, action - GNN — next state — MSE

Method works with a variety of objects and setups (with tiny object, with heavy
and trapezoid objects; with bottle to be grasped, etc)

Summary: dynamic model can enable Tobot to learn from minimal demo; stowing
task for long-horizon manipulation; effectiveness and generalization.

2.2 <Welcome Ceremony>

History of CoRL:

- 2017 Mountain view — 2018 Zurich — 2019 Osaka
— 2020 Virtual, MIT — 2021 London

— 2022 Auckland — 2023 Atlanta

Statistics: This year’s CoRL is the largest CoRL

81% increase in in-person attendance from 2022;
912 total in person participants.

78% decrease in virtual attendance;

650 workshop attendees.

Papers:

498 submissions this year.

199 papers were accepted. (39.9%)

33 oral presentation (6.6%) + 166 posters

Review Process:

83 days with 60 area chairs 551 reviewers and 1658 reviews

79% papers received 4+ reviews; each paper received at least 3 reviews;
rebuttal improved paper quality (each paper received on average 6 reviewer
responses); 203 papers improved score
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Workshops:

32 workshop proposals - Strong emphasis on diversity and extra activities
Popular keywords: foundational models, representation learning, manipulation,
agility;

11 accepted workshops (34%); total 225 workshop papers

2.3 < Oral Session 2: Reinforcement Learning >

<Talkl>

Franck Djeumou, Cyrus Neary, Ufuk Topcu, How to Learn and Generalize
From Three Minutes of Data: Physics-Constrained and Uncertainty-
Aware Neural Stochastic Differential Equations [24]
https://openreview.net/pdf?7id=770xKAHeF'S

Learning to predict system dynamics
Objective: learn to a control-oriented dynamics model from offline trajectory
data

Questions:

- How can we leverage physics knowledge in data-driven models?
- How to build useful approximations of model uncertainty?

- how to control real systems using limited data?

Physics-aware neural stochastic differential equations with uncertainty estimates:

e physics-informed structure + state s and control input u goes into the
physics-informed neural ODE, which outputs physics-aware drift term,

e training dataset — learned distance-aware uncertainty estimate

e together it solves SDE

Training of the distance-aware uncertainty term Objective: parameterize and
train a diffusion term with the following properties:

1. efficient evaluation at inference time,

2. low diffusion near the dataset

3. diffusion increases with the distance to the nearest training datapoint

4. diffusion saturates at a maximum value

Neural SDEs for model-based RL: model-free performance with a fraction of the
system interactions; using dynamics dataset, train neural SDE — control policy

<Talk2>

Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, Xiao-
long Wang, Finetuning Offline World Models in the Real World [25]
https://openreview.net /pdf?id=JkFeyEC6VXV
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Current Challenges in robot learning:

e Interactions are costly

e Random exploration is inefficient

Question: how to leverage existing data for learning new tasks quickly?
Pipeline: Offline pretraining of existing data — world model (TD-MPC) —
online fine-tuning using the world model for an unseen task

Planning with the world model faces model uncertainty issues
— use Q-ensemble — regularize the reward terms

<Talk3>

Zixuan Wu, Sean Charles Ye, Byeolyi Han, Matthew Gombolay, Hijacking
Robot Teams Through Adversarial Communication [20]
https://openreview.net /pdf 7id=bIvIUNHIVQ

Multi-agent system with communication; some perturbation of communication
messages. In the work, learn to hijack the coordination behaviors.

Communicative multi-agent problem setting. Each agent tries to catch prey;
communication (binary data). Team collectively maximizes the reward. Adver-
sarial policy: intercepts the intended message from agents; send back altered
message.

Previous works:

1. assume online poisoning RL training where the adversary’s policy can explore
how altered messages change the agent actions in the environment

2. adversary’s policy can learn from the ground truth reward signal.

— seek to remove these assumption.

Contribution:

1. learn without environment interactions by learning a surrogate policy

2. learn without ground truth

3. design a differentiable representation for adversarial bit flipping

— Learn a model of agent behaviors (surrogate policy) through behavior cloning
Use the surrogate policy for reward estimation.

Differentiable adversary’s policy: direct mode and flipping mode

Limitations:

e attacking interpretable communication vectors
e polymorphic encryption

e low swap devices

Summary:
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e trained full black-box by learning a surrogate policy

e train without access to gt rewards by inferring the reward from surrogate
policies

e differentiable representation for adversarial bit flipping

<Talk4>

Robert Gieselmann, Florian T. Pokorny. Expansive Latent Planning for
Sparse Reward Offline Reinforcement Learning [27]
https://openreview.net /pdf 7id=xQx107WXSA

Value-guided expansive latent planning

Problem setting: sparse reward visual off-line RL method:
- Contrastive state representation

- Guided tree search in latent space

- Local Q — temporal distance

- Global Q — cost-to-go

Reject n-step rollout if

- Not reachable (with certain number of steps)
- Model uncertainty is too high

- New node is not novel enough

Guided node and action sampling
Sparsity and value heuristics improve planner efficiency

<Talk5>

Wenxuan Zhou, Bowen Jiang, Fan Yang, Chris Paxton, David Held. HAC-
Man: learning hybrid actor-critic maps for 6d non-prehensile manip-
ulation [28] https://openreview.net/pdf?id=fa7FzDjhzs9

non-prehensile manipulation: manipulating object without grasping; pushing,
flipping, toppling, sliding...

Task: 6D object pose alignment with non-prehensile skills. 6D object pose
alignment with point cloud observations. Challenges:

e requires sequential contact decision
e requires dynamic interaction with the objects
e reasoning about geometry
Standard action space in manipulation: robot-centric; extremely inefficient!

Most of the actions are free-space motions. actions are robot-centric instead of
object-centric. Difficult to generalize.

Instead, in this work, define an object-centric action space.
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e Contact Location selected from the object point cloud.

e Motion parameter (continuous) from delta EE movement.

Benefits: 1. temporally abstracted 2. spatially grounded.

Spatial action map:

- densely connecting actions to visual input using segmentation-style networks
- discrete-continuous action space

- learned with RL; no expert demonstrations and just with sequential decision.

Idea: obtain per-point contact critic
Critic map: embedding the choice of contact location in a segmentation-style
critic.

3 Day 3 (Nov 8th)

3.1 < Oral Session 3: Driving, Navigation, Locomotion >

<Talk 1> Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin
Black, Noriaki Hirose, Sergey Levine. ViNT: A Foundation Model for
Visual Navigation [29] https://openreview.net/pdf?id=-K7-1WvKO3F

Simulation training = model environment in sim; generalize to zero-shot
vs.
real-world training = on-robot data collection; difficult to generalize zero-shot

Why is real-world robot learning hard?

- The real world is hard to simulate

- Collecting data is a high barrier for entry
- may be infeasible for many system

- learned policies can be fragile

How AT used to work; all of different models (segmentation, classification, cap-
tioning, visual QA, sentiment,..) — Now: giant self-supervised pretrained model
(foundation model) — prompting,..

How mobile robots should learn in the future? Train a giant robot foundation
model — finetuning — tasks

Navigation Foundation Model is composed of algorithm, data, model
- Algorithm: self-supervised objective

- Data: cross-embodiment data

- Model: Transformer backbone; prompt-tuning and adaptation
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ViNT: Visual Navigation Transformer (30M trainable parameters

Exploration with ViNT; train a generative model to suggest subgoal candidates;
score subgoals using a goal-directed heuristics

Interesting part: transformer prompt-tuning?
<Talk 2>

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher G Atkeson, Séren Schw-
ertfeger, Chelsea Finn, Hang Zhao. Robot Parkour Learning [30]
https://openreview.net /pdf?id=u0937r5e TE

Why parkour? Isn’t walking enough? The answer is ‘not enough’.
— Parkour skills are necessary for the open world. (Leap, Climb, Crawl, Tilt..)

Recent success on locomotion rely on heavy reward engineering, and customized
for one task: walking. Not scalable to the parkour skills.

— RL with soft dynamics constraints, inspired by direct collocation methods.
— softly penalize penetration;

reward -= (# of penetration points 4+ penetration depth)

Next step: RL fine-tuning with physics
— Then, One parkour policy (egocentric depth and proprioception as inputs)

<Talk 3> Kevin Huang, Rwik Rana, Alexander Spitzer, Guanya Shi, Byron
Boots. DATT: Deep Adaptive Trajectory Tracking for Quadrotor Con-
trol[30] https://openreview.net/pdf?id=XEw-cnNsr6

Agile drone flight; problem setting - minimize the distance from location of
drone to the reference point, at each time

Need a framework that (1) tracks arbitrary trajectories (2) adapts online to
unknown conditions. (3) leverage domain knowledge and inductive biases (4)
Little/no fine tuning (5) Fast

Previous approaches:

e classical nonlinear controller (requires bounded higher order derivatives of
reference position

e Model Predictive Control (MPC), reliant on accuracy of dynamics model
and optimality of OCP solver

e RL, requires relatively minimal priors about tasks. but lack of inductive
biases can cause sim2real issues

Their approach: condition on the embedded reference trajectory — feedforward
model; disturbance estimation residual; modular adaptation strategy can easily
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be changed.

Limitations: High variance in training; everything must be in body frame; learn-
ing curriculum is important; stability /safety guarantees?

<Talk 4> Xiyang Wu, Rohan Chandra, Tianrui Guan, Amrit Bedi, Dinesh
Manocha. Intent-Aware Planning in Heterogeneous Traffic via Dis-
tributed Multi-Agent Reinforcement Learning [31]
https://openreview.net/pdf7id=EvuAJOwD98

Motivation: heterogeneous traffic.

It is challenging to model the interaction between heterogeneous agents.
Real-world datasets are insufficient (most datasets are homogeneous traffic)
Improve MARL(multi-agent RL) framework

Contribution: MARL approaches for joint trajectory and intent prediction

Method:

e ego vehicle: traffic state at time t - (1) current observation (2) behavioral
incentive (3) instant incentive

e behavioral incentive inference; use historical observation sequence and pre-
vious behavior incentive inferences to generate new behavior incentive in-
ference.

e instant incentive inference.

e controller

Summary: iPLAN is first MARL algorithm embedded with a trajectory and
intent prediction, in dense traffic situations.

<Talk 5> Ziyuan Zhong, Davis Rempe, Yuxiao Chen, Boris Ivanovic, Yu-
long Cao, Danfei Xu, Marco Pavone, Baishakhi Ray. CTG++: Language-
Guided Traffic Simulation via Scene-Level Diffusion. [32]
https://openreview.net /pdf 7id=nKWQnYkkwX

Why traffic simulation? (1) road test for AVs can incur traffic accidents
(2) road test can miss corner cases

Desirable properties of traffic simulation model —
context; traffic trajectories leading to collision; realism; controllability; user-
friendly interface.

heuristic-based models is controllable but not realistic; data-driven traffic mod-
els are not controllable; CTG is controllable, realistic, but not user-friendly;
CTG++ solves these issues.
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Overview of CTG++:
predefined APIs and Examples — GPT4 — guidance loss — CTG++ module

- Motivation for language guidance — no paired text-to-traffic data; GPT4 can
translate text to code; diffusion can be guided by loss function

- Approach — leverage GPT4 to convert text to loss function in code to guide
diffusion.

Scene-level diffusion: spatial-temporal transformer backbone.
Motivation: we want to model agents jointly.
Approach: propose a spatial temporal transformer to capture agent interactions.

Spatial Attention

- Motivation: directly using scene-centric coordinates or agent-centric coordi-
nates have limitations

- Approach: agent-centric coordinate+ spatial attention incorporate relative
information of vehicle pairs

3.2 <Oral Session 4: Large Language Models >

<Talk 1> Adam Rashid, Satvik Sharma, Chung Min Kim, Justin Kerr, Lawrence
Yunliang Chen, Angjoo Kanazawa, Ken Goldberg. Language Embedded Ra-
diance Fields for Zero-Shot Task-Oriented Grasping [33]
https://openreview.net /pdf?id=k-Fg8JDQmc

Task-oriented grasping; must pick up a particular part of the object. Can we
scale object part datasets?

What about unlabeled parts? — natural language... but in 3D?
Language in 3D? objects? but what about sub-parts?

Closely related work: Language Embedded Radiance Field (LERF) [34]
abstract queries, text reading, multi-scale semantics, uncommon objects

(1) reconstruction of scenes. (2) extract point cloud for inputs.

Why don’t naive queries work? CLIP Bag-of-words. rose and stem, respectively,
works well, but ‘rose stem’ doesn’t.

grasp selection: geometric candidates — reweight them semantically

Limitations:

e computationally heavy

e static scene representation
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e pre-scripted primitive actions

e unreliable for existing queries

<Talk 2> Wenhao Yu, Nimrod Gileadi, Chuyuan Fu et al. Language to
rewards for robotic skill synthesis [35]
https://openreview.net/pdf/23{e82729ecd694d697caf92d13dele08a63bbc0.pdf

LLMs have great potential in high-level reasoning, but do not handle low-level
actions directly — it is not a fundamental limitation of LLMs.

Language-to-reward: good interface? Reward function is very expressive. LLM
can understand via code; rich literature on reward-to-action.

LLM Reward translator — motion descriptor — description of the desired mo-
tion in natural language — reward coder — reward code

Takeaway: in-context prompting and zero-shot

Low-level controller: Model predictive control. Interactively synthesizing low-
level actions to optimize cost/reward.

Concurrent work: Voxposer [36], Eureka [37]

< Talk 3>

Allen Z. Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu,
Noah Brown, Peng Xu, Leila Takayama, Fei Xia, Jake Varley, Zhenjia Xu,
Dorsa Sadigh, Andy Zeng, Anirudha Majumdar. Robots that ask for help:
uncertainty alignment for LLM planners [38]

https://openreview.net /pdf?7id=4ZK8ODNyFXx

Robots should know when they don’t know and ask for help. LLMs can generate
long-horizon plans and write code. But they often don’t know when they don’t
know. Uncertainty estimate can be biased.

Would like to quantify the uncertainty of LLM Planner.

1. Ask enough help to ensure a statistically guaranteed level of success
2. Ask for minimal amount of help

KnowNo: Know When you don’t know

Perplexity of samples? Instead, planning as multiple-choice Q&A.
Generate possible plans — query next-token probabilities

Calibrate LLM planner with conformal prediction.
LLM outputs prediction set; statistical guarantee > user-specified probability.

How? collect calibration dataset — confidence score
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Conformal prediction minimizes prediction set size.
Extension to multi-step planning setting.

<Talk 4> Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Min-
suk Chang, Shao-Hua Sun, Joseph J Lim.

Bootstrap Your Own Skills: Learning to Solve New Tasks with Large
Language Model Guidance [39] https://openreview.net/pdf?7id=a0mFRgadGO

Want: solve complex tasks in new settings
Previous approach’s problem: dense task-specific supervision

Through practice:

- master skills in new situations

- compose skills into new, complex behaviors
solve complex tasks in new settings

BOSS: Autonomous practice with LLM-Guidance

Prior work like SayCan doesn’t adapt to new environments.
BOSS learns new skills through practice.

— closed-loop; adapts to target environments; no test time LLM

Loop of Mastering and Composing Skills with the LLM guidance in the middle.
Repeats this process iteratively.

<Talk 5> Krishan Rana, Jad Abou-Chakra, Sourav Garg, Jesse Haviland, Tan
Reid, Niko Suenderhauf. SayPlan: Grounding Large Language Models
using 3D Scene Graphs for Scalable Task Planning [40]
https://openreview.net /pdf?7id=wMpOMOO0Ss7a

Goal: have a robot that can complete many tasks, across large-scale environ-
ments.

— Generation of sequences of high-level actions to achieve a goal.

Classical approach is not scalable.

Recently, we use LLMs. But LLM should be grounded to the environments.
Currently, limited to small scale table-top or single-room environment.

How to ground LLM to larger environments?

Answer is to use 3D scene graphs! [41]

Hierarchical abstraction of an environment captures semantics, affordance, pred-
icates, state, attributes.

Naive approach doesn’t scale with environment size and planning horizon.
Answer: use 8D scene graph along with LLM!

Exploit the hierarchical nature of the scene graph. Compress it. Semantic
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Search by identifying a task relevant sub-graph suitable for planning.

Planning: generate an executable task plan for a mobile manipulator robot.
e Path planner connects high-level LLM-generate navigational goals

e Scene graph simulator feedback allows the LLM to refine the generated
plan.

<Talk 6>

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, Li Fei-
Fei. VoxPoser: Composable 3D Value Maps for Robotic Manipulation
with Language Models [30]

https://openreview.net/pdt?id=9_8LF30mOC

Motivation: What do we need to achieve a task goal?
Task semantics 4+ physical behaviors.

Aim: No robot training data required; synthesize 6 DoF closed-loop actions

VoxPoser: VLM/LLM generates code
— code-generated 3D value map
— motion planning

Also generates rotation map, gripper map, velocity map
Code-generated 3d value map:

e vision: grounded in 3d robot perception;

e language: reasoning capabilities of LLMs; natural interface with human
users

e action: directly enables 6 DoF closed-loop actions; no robot data required

What about tasks involving more intricacies of contact?
random exploration is not apt

— voxposer can generate priors

— exploration around prior

Limitations

- relies on verbal interaction between LLM and VLM. this can be bottleneck.
- only consider end-effect in motion planning

- insufficient for tasks requiring fine-grained contact modeling

3.3 Early Career Keynotes

<Invited Talk 1> Chelsea Finn, Amending Moravec’s Paradox

33


https://openreview.net/pdf?id=9_8LF30mOC

Traditional AI success stories: solving complex problems, Go, Atari..
But truly complex problems? basic manipulation skills are beyond the scope of
current methods

Moravec’s paradox: things that are intuitive and easy for humans are often hard
for machines

ChatGPT - holding a dialog; Segment Anything - low-level perception; creative
imagery; but we still lack the basic motor skills as babies have

What is hard and easy for machines? What is more difficult for the robot?
Putting on shoes? or opening a pot lid? People think putting on shoes is more
difficult.

What is hard for robots? Traditionally

- coordinating many degrees of freedom

- many timesteps

- precise control

- situations that are hard to model/simulate

In fact, putting on shoes or prep tape tasks are being tackled.

Opening the pot 1id? Maybe it is challenging? Contexts vary a lot; scenes vary
a lot; what makes the task difficult is not the task itself, but the context as well

Amending the Moravec’s Paradox; things are hard for machines if it’s
hard to get data for those things.

We need to ask what was in the training data. Another thing that is hard:
broad robot generalization.
— 1. Broaden the data distribution 2. generalize beyond the training data

Can we use broad data across institutions, robot embodiments? 1. Put all of
the data in a common format — Open X-Embodiment dataset
2. Train a large model

Key Takeaway:

- One policy can control multiple robots at multiple institutions.

- Training on cross-embodiment data improves over training on in-distribution
data.

What about generalization beyond the training data?

Idea: can robots adapt on-the-fly during deployment?
— motivation for single-life reinforcement learning; given prior data in train
envs, agent has one life to autonomously complete task in novel, OOD scenario.

Idea: Can robots adapt both in the space of parameters and in the space of
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behaviors?

Arguments:

- What we should not do:

propose fancy method for getting robot to do complex task

- What we should do? enable scalable data and methods for getting robot do
many complex tasks in many scenarios with many objects

<Invited Talk 2> Jemin Hwangbo, Building dynamic legged machine

Legged locomotion: this talk’s focus is on dynamics, estimation, adaptation,
and hardware design

Progress of legged robot control research (chronological): heuristic rules — zmp-
based control — dynamics-based control — trajectory optimization — deep RL

Rigid-body dynamics: raisim (fast rigid-body; fast RL implementation)
The reality gap; when policy was transferred to the real robot, it totally failed.

Actuator dynamics: actuation is so complex that we cannot assume that this
is ideal. Yet, complex actuator dynamics can be learned. — More successful
real-robot results

Terrain Dynamics: challenge is at deformable terrain. General deformable ter-
rain solution (Chrono).

Deformable train; models for compaction, friction, resistance — simulating di-
verse terrains using the proposed model — impressive results of legged robot
running on the sand.

<Invited Talk 3>
Yuke Zhu, Pathway to Generalist Robots: Scaling Law, Data Flywheel,
and Humanlike Embodiment

Specialist — Generalist — Specializing Generalist
On our pathway to specialized generalist robot, we need generalist robot models

In NLP,

Semantic parsing, sentiment analysis, text summarization, information extrac-
tion — Large Language Model — creative writing, travel planning, source code
auto-completion

Recipe for building generalist robot models
e scaling law: powerful robot learning models that scale with data and
compute

e data flywheel: new mechanism to collect massive training data

e human-like embodiment: humanoid robot platform
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Key Idea: Skills as APIs and Scaling Law; Library of skill APIs, invoking pa-
rameterized skills. Data-efficient imitation learning for sensorimotor skills.

Massively multi-task robot learning for model scaling. VIMA. generalist robot
agent for multi-task learning and zero-shot generalization. Transformer (encoder-
decoder) architecture that encodes multimodal prompts with a frozen language
model; object-centric representation

Data Flywheel:
wider deployments — more training data — better models — more capable
robots — wider deployments... cycle

e How can we ensure trustworthy deployment?

e How can robots learn efficiently?

Human-like Embodiment: Draco3 Humanoid robot development

<Invited Talk 4>
Karol Hausman, Bitter Lessons & Sweet Future in Robot Learning

Bitter Lessons - famous essay by Richard Sutton
computation are ultimately the most effective..

New bitter lesson?

1. robotics will need to understand the world through data
2. trend:?

3. work on robot learning methods that leverage that trend

What is the trend? New trend?

Foundation Models.

- Interest outside of robotics; scale with data and compute (1st bitter lesson);
get better at understanding the world

New bitter lesson.. Imagine community is looking back now 70 years later..
“The biggest lesson that can be read from 70 years of robotics research is that
general methods that leverage foundation models are ultimately the most effec-
tive”..?

Bitter lesson aspect of PaLM-SayCan:

- robotics performance scales with better LLMs!
- chain-of-thought prompting

- solves all kinds of queries

The bottleneck is still on the actions. Can we apply our new bitter lesson to the
actions?

RT-1: robotics transformer 1
— now, RT-2, absorbed much more data, RT-1,..
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Representing actions in VLMs.
RT1: positional changes..(Az, Ay, Az), rotational changes..
RT2: Just stringified it! vision-language-action (VLA) model

User/agent interfaces:
- RT-Sketch https://rt-sketch.github.io/
- RT-Trajectory |https://rt-trajectory.github.io/

<Talk 5>
Stefan Leutenegger, From Multi-Sensor SLAM to Spatial Al

Example: drone-based mapping for digital forestry.

Classical, modular mobile robotics: perception — state estimation and mapping
— planning — feedback control

natural introspection and interaction: shared representations (map, knowledge,
signals)

radically shifting to learning-based mobile robotics;

- self-emergent, not handcrafted behaviors and representations
- blackbox, no guarantees; very difficult to introspect

- not data efficient enough

Hybrids advocated for in this talk:

natural introspection, interaction + efficient training of modules 4+ end-to-end
training and fine-tuning possible + learned modules/policies running in parallel
as residuals

Levels in Spatial AI: dense mapping — semantics maps — object-level and
dynamic maps

3D occupancy mapping; map visualization
Summary:

e contributions SLAM and Spatial AT; from robot motion to dense geometry,
semantics, objects, and human motion

e Deep Learning proves helpful for inference of semantics, objects, people;
data association over time; completion of geometry beyond the visible

e the modular architecture allows for integration with robot planning and
control

<Talk 6> Shuran Song, What I wish I had for robot learning

Pushing the boundaries of manipulation..by carefully designing action primitives
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Well-designed action primitives: simplifies learning, but requires engineering
effort and insights, gradually becomes bottleneck

Changing the workflow: design actions for learning — learn complex skills di-
rectly from data — Diffusion policy

Diffusion policy: generative model for robot actions.

If we can collect the data, the robot can do the task...but is it really easy? no
— Caveat: data is not any type of data
— a lot of effort and intelligence to get the right data

secret recipes for collecting data:
- train yourself

- cover the task space

- anticipate the robot failures

- protect the environment

What I wish I had for robot learning:
e Data! Scalable

e Data! Reusable

e Data! Robot-Complete

Simulation: it’s reusable. what’s the bottleneck? accuracy? it can be im-
proved with more compute; setup cost for new tasks! often overlooked.

Robot-complete data: embodied actions + embodied observations + non-zero
success rate — easy to scale for one task but hard for many tasks

Using LLMs — scaling up and distilling down

- Scaling up: Use LLMs to guide the exploration.

- Distilling Down: visuomotor policy that

— infers actions from raw sensory input, without simulation state

— does continuous improvements with more experience, without fine-tuning the
language model itself

Real-world data: What is the bottleneck? need human demonstrations? it’s

not a true bottleneck. Rather, lack of an intuitive and standardized interface
for demonstrations is a bottleneck.
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4 Day 4 (Nov 9th)

4.1 < Oral Session 5: Manipulation 2>

<Talk 1> Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang, Li Fei-Fei, Danfei
Xu, Yuke Zhu, Anima Anandkumar. MimicPlay: long-horizon imitation
learning by watching human play.[42]

https://openreview.net /pdf?id=hRZ1YjDZmTo

How can robot tackle long-horizon manipulation tasks?

- Task and motion planning: inflexible to new setups

- Planning with LLMs: flexible to novel tasks and domains; but lack of grounding
and low-level control

Key factors for long-horizon manipulation:
(1) real-time planning and control (2) closed-loop reaction

- robot demo — small domain gap, but high cost
- web data — low cost, but large domain gap
We want something in between?

Key features of human play data:
1. rich 3d trajectory plans 2. diverse task goal compositions

Human-play data is faster to collect; it is also large-scale. Robot teleoperation
is slow to collect and small-scale.

MimicPlay: high-level planner learned with human play data: low-level control
learned from robot data

In high-level: current image and goal image — latent plan — 3D hand trajectory
reconstruction; for unpaired robot image, use KL Loss

After training high-level latent model, freeze the model, and use it for low-level
control

Limitation: requires third-view camera system

<Talk 2> Shiqi Liu, Mengdi Xu, Peide Huang, Xilun Zhang, Yongkang Liu,
Kentaro Oguchi, Ding Zhao. Continual Vision-based Reinforcement Learn-
ing with Group Symmetries [43] https://openreview.net /pdf7id=flyQ0v8cgC

Continual learning in human? solving streaming tasks in the real life.

Solving streaming tasks in the robot lifespan development!
Goals: learn new tasks quickly & remember learned tasks
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Humans are good at handling different configurations; learning skills to solve
equivariant tasks

In the robot world, equivariant task configurations require equivariant actions.

COVERS: solve equivariant tasks in continual RL. Detect delineations between
task groups 4+ one equivariant policy for each group.

Pipeline: after collecting online interaction data — unsupervised data clustering
— if distance (between the current rollout data and data for each policy) is
below the threshold, append to the data buffer and update policy; otherwise,
new policy

Equivariant feature extractor has equivariant convolutional net and linear net-
works; yields invariant value network and equivariant policy net.

<Talk 3> Yulong Li, Andy Zeng, Shuran Song. Rearrangement Planning
for General Part Assembly https://openreview.net/pdf?id=pLCQkMojXI

Part-assembly: previous assumptions

(1) fixed targets

(2) fixed categories

(3) fixed parts

(4) precise object models

But should work with non-exact parts, novel target category, visual perception

General Party Assembly — rearrangement planning (different from other plan-
ning like motion planning, task planning)
Rather than canonical pose and exact parts — random pose and non-exact parts

Idea 1: optimize for Chamfer distance?

— local minimum problem, worse on non-exact.
Idea 2: regressing part poses?

— ambiguities, generalization problem

= Approach: general part assembly transformer

Segmentation prediction — pose estimation — assembly prediction
PointNet and PointNet+Max pools — GPAT layer — MLP

GPAT layer? to address ambiguities, local-to-global attention: consistency of
segmentation; Use multi-scale attention

<Talk 4> William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kael-
bling, Phillip Isola. Distilled Feature Fields Enable Few-Shot Language-
Guided Manipulation [44] |https://openreview.net/pdf?id=Rb0nGIt_kh5

40


https://openreview.net/pdf?id=pLCQkMojXI
https://openreview.net/pdf?id=Rb0nGIt_kh5

Scene representation: generalization to unseen categories
What are in the scene? where they are? we both care about semantics and
geometry.

Let’s marry 2D foundation models and NeRFs (highly fined-grained 3D geom-
etry) — 3D neural feature fields!

Their Method: F3RM

(1) producing feature fields

multi-view images (50 images)

Difference between F3RM and NeRF

: F3RM extract dense features by passing these images to CLIP (VLM)

(2) how to use it for manipulation:

language-guided manipulation with CLIP Feature fields

1. retrieve relevant demos - text features from clip

— 2. language-guided pose optimization (maximize similarity)

Limitations:

e requires dense views (50 images)
e optimization per scenes (computation)

e CLIP behaving like a bag of words

<Talk 5> Yanjie Ze, Ge Yan, Yueh-Hua Wu, Annabella Macaluso, Yuying
Ge, Jianglong Ye, Nicklas Hansen, Li Erran Li, Xiaolong Wang. GNFactor:
Multi-Task Real Robot Learning with Generalizable Neural Feature
Fields [45] https://openreview.net/pdf?id=b1t13aOt2R2

How to learn 3D feature fields from 2D foundation models?
— Use the idea of NeRF

Can we achieve multi-scene manipulation with few demos? one single policy for
two different kitchens? more interestingly, one single-policy for multiple tasks?

Distill 2D feature map into 3D space with generalizable NeRFs.

Learn a unified 3d and semantic representation; dense and rich semantics from
stable diffusion feature.
: diffusion feature — 3d space — generalizable neural feature fields.

GNFactor: Learning deep volumetric representation — efficient in encoding dy-
namic scenes.

Deep 3d volumetric representation — render diffusion feature + action predic-
tion; doing so, it learn multi-task generalizable policy jointly
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<Talk 6> Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, Dieter
Fox. RVT: Robotic View Transformer for 3D Object Manipulation
[46] https://openreview.net/pdf?7id=0hPkttoGAf

So far, popular representations for 3d manipulation:
e (1) View-based representation (scalable, but cannot handle 3D and don’t
work well)

e (2) Explicit 3d representations (not scalable, perform well)

— RVT: robotic view transformer. Represent the scene via set of orthogonal
(virtual) images; more scalable and performs well.

RVT pipeline: scene — input RGBD images — reconstructed point cloud —
virtual images (virtual view representation; orthographic angles) — predicted
2D heatmap — reverse projection operation — predicted 3D heatmap — gripper
location; gripper rotation and state — execution

Key Ideas:

e Re-rendering with virtual orthogonal camera shows better performance
than using input views, probably because of inductive bias and 3D aug-
mentations

e (Contrary to perspective projection) in orthographic projection, object
sizes remain same independent of distance from camera.

4.2 Sponsor Talk: Google DeepMind

<Talk> Open X-Embodiment: Present and Future
https://robotics-transformer-x.github.io/

Context: the tales of large datasets
In CV and NLP:

e Large scale datasets unlock new capabilities in CV and NLP research

e data sources are naturally occurring

But is it equivalent for robotics research?

Addressing data scarcity as a community:
Previously: BridgeV2, RoboTurk, QT-OPT, RoboNet... however they end up
being isolated, small datasets.

Diversity on the type of tasks:
...long-horizon tasks, soft objects, dexterity, tactile sensing...
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Many Embodiments: mostly robot arms (stretch, xArm, Franka, google robot)
Many Scenes: robot lab, kitchen, outdoors, tabletop
Many Skill: pouring, unfolding, cable routing; screwing

The Open X-Embodiment Dataset

a

~A21 1M+ Real Robot Episodes
G
\& 22 Robot Embodiments

ﬁl 34 Research Labs

‘n 300+ Scenes

Figure 4: Open X-Embodiment Dataset Overview

Common framework for datasets (specific common format)
Diverse data — new challenges

Specialist models trained on specialized datasets (dexterity, long-horizon + ...
many other tasks)

Key Research Questions:

Generalist models better than specialist models?

Is all this work worth our time?

High-capacity architectures; minimal architecture modifications (impacts of data
scaling)

Current modeling assumptions: single arm
2-fingers, mostly parallel yaw
still interesting diversity!

Just RT-1 and RT-2 trained on X-embodiment datasets. Images and a text
instruction as input; outputs discretized end-effector actions.

Three axes of emergent skills evaluations:
(1) Object-relative position understanding; (2) absolute position understanding;
(3) preposition modulates low-level motion
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Future Direction
Dirty laundry: open x-embodiment dataset is diverse, but not truly in-the-wild

Need more:

- diverse environments

- robot embodiments (mobile manipulation, humanoids, drones..)
- realistic tasks

- simulation data

RT-X model is not ‘flexible’. Future models should support:

- flexible input observations (camera, depth, proprioception...)

- flexible task specification (goal, language...)

- flexible action spaces (EEF, join space, base movement, bimanual..)
- efficient fine-tuning

But is diverse data all we need?.. what about evaluations?

Many labs have a small amount of data. By pooling, we get a large and diverse
data. — Many labs have a few benchmarking tasks. By pooling, we get a large
and diverse benchmark.

Internet of robotics data?

- no lost byte

- responsible data practices?

— lineage tracking, data version control at scale
- contribute data if you have new hardware!

An API for generalist robot models?

RT-2-X is the first model to work for multiple platforms, institutions, and tasks.
Can we test it in even more situations?

Prompt, image — RT-2-X API (in the cloud) — actions
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